
The Structured Phase of Concurrency
(Extended Abstract)

Artem Polyvyanyy1 and Christoph Bussler2

1 Queensland University of Technology, Brisbane, Australia
artem.polyvyanyy@qut.edu.au

2 Analytica, Inc., Palo Alto, CA, USA
chris@real-programmer.com

Abstract. This extended abstract summarizes the state-of-the-art so-
lution to the structuring problem for models that describe existing real
world or envisioned processes. Special attention is devoted to models that
allow for the true concurrency semantics. Given a model of a process, the
structuring problem deals with answering the question of whether there
exists another model that describes the process and is solely composed
of structured patterns, such as sequence, selection, option for simulta-
neous execution, and iteration. Methods and techniques for structuring
developed by academia as well as products and standards proposed by
industry are discussed. Expectations and recommendations on the future
advancements of the structuring problem are suggested.

Keywords: Structured, unstructured, process, modeling, process model,
structuring, concurrency, true concurrency

1 Introduction to Concurrency

Processes are properties of dynamic systems that are usually defined as series
of steps taken to achieve a goal, e.g., chemical or thermodynamic processes.
Many scientific disciplines study processes by means of modeling. A model of
processes, or a process model, is a particular representation of processes of the
same nature. The study of processes is predominant to the computer science
discipline. Computer programs and workflows are examples of process models.

Concurrency is a property of a process which indicates that steps of the
process can be performed simultaneously by several autonomous “workers” that
may coordinate their work by means of communication, e.g., instructions of a
computer program carried out by several processing units within a single or
across multiple computers. Usually, concurrent processes are more efficient than
processes in which all work is performed by a single worker, where efficiency is
the measure of the amount of work accomplished within a given time frame.

There exist several formalisms for describing concurrent processes, cf., [1]
for examples and a classification of formalisms. Concurrency can be represented
implicitly in a process model as a nondeterministic choice between all possible
sequentializations of concurrent steps. Afterwards, an option for a simultaneous
execution of steps can be deduced based on the interleaving of these steps.
Alternatively, concurrency can be modeled based on partially-ordered sets of
steps — an approach that is often referred to as the true concurrency semantics

mailto:artem.polyvyanyy@qut.edu.au
mailto:chris@real-programmer.com


2 Artem Polyvyanyy and Christoph Bussler

of processes. The true concurrency semantics specifies that unordered steps of
a process can be enabled and performed simultaneously. Observe that process
models which account for the true concurrency semantics are more informative.
They explicitly represent steps that can be performed by different workers, as
well as describe all possible sequentializations of steps.

Concurrent processes are complex. The complexity is primarily due to the fact
that the number of all possible sequentializations of process steps is exponential to
the number of concurrent steps in the process. Consequently, concurrent processes
are complex to design and analyze because one needs to account for all possible
interleavings of steps that can lead to potential flaws.

The next section defines the structured property of process models. After-
wards, Section 3 reviews progress achieved in academia and industry that relates
to the structuring problem of process models. Finally, expectations and recom-
mendations on the future advancements with respect to structuring are proposed.

2 The Structured Phase

A process can be formalized in many different ways following different modeling
styles, i.e., it can take different forms. This reminds of various states that a
physical matter can take on. For example, H2O is a substance that its gas, liquid,
and solid states are widely known, viz. steam, water, and ice, respectively. Often,
there exist several phases of the same state of matter, where a phase is a region
of space (a thermodynamic system), throughout which all physical properties of
a material are essentially uniform [2]. For instance, diamond and graphite are
both solid carbon with different physical characteristics, e.g., color, crystal shape,
etc. Similarly, there can exist several different models of the same process that
are captured in the same formal language.

Besides many existing modeling styles, processes are usually formalized by
following on the principles of the imperative paradigm. Process models that follow
the imperative style are described in terms of sequences of statements/commands
that change a process state. Intuitively, an imperative process model can be
perceived as a directed graph with nodes representing commands and pairs of
subsequent commands representing edges.

Process graphs, i.e., graphs induced by imperative process models, can take
different forms. However, it is often preferred that process graphs obey some
structural rules, like the one that a process graph should be structured.

A process graph is structured, if for every node with multiple outgoing edges
(a split) there exists a corresponding node with multiple incoming edges (a
join), and vice versa, such that the subgraph between the split and the join
forms a single-entry-single-exit fragment; otherwise the graph is unstructured.

Consequently, a process model is structured if and only if a process graph
induced by the model is structured. The reader can refer to [3] for a detailed
motivation of structured process modeling. In summary, most of the benefits of
using structured process models boil down to the observation that it is often
straightforward to modularize handling of structured process graphs at various



The Structured Phase of Concurrency 3

stages of their life cycles. For example, it is evident that structured computer
programs are easier to understand and maintain as opposed to unstructured
ones, which contain arbitrary “jump” constructs leading to programs that induce
“spaghetti” process graphs. Nevertheless, unstructured modeling is often praised
for the freedom it offers when designing a process model. Indeed, there are no
restrictions on which form a process graph can take. Considering modeling to be
a highly creative activity, the freedom of expressing concepts and ideas in models
is of significant importance.

When proposing a process modeling methodology, one faces a dilemma of
whether to allow or forbid unstructuredness. Allowing for unstructuredness sup-
ports creativity of process designers, while forbidding it comes with a continuous
and seamless ability to enjoy benefits of structured models. The problem of struc-
turing a process model deals with the automated construction of a structured
model that represents the process described in the given model, i.e., finding the
structured phase of the process.

3 State of the Art

In this section, we review the progress achieved by the research community on a
solution to the structuring problem for process models that account for the true
concurrency semantics (Section 3.1), as well as analyze the support of structured
and unstructured process modeling by the software industry sector (Section 3.2).

3.1 Research: Methods and Techniques

In this section, we discuss scientific results on methods for structuring process
models. Special attention is paid to techniques that address structuring of models
that account for the true concurrency semantics.

Results on structuring sequential process models, i.e., models that describe
non-concurrent processes, are mainly due to results on elimination of goto

constructs in computer programs. The structured program theorem [4] provides the
theoretical foundation of structured programming. It states that every program
can be expressed with three patterns: sequence, selection, and iteration. Moreover,
it is well-known that a sequential process model, e.g., a program, can be formalized
as a flowchart and structured, e.g., by using the techniques proposed in [5,6].

The concurrent world is a bit more complex. In this world, the results on
structuring of sequential process models cease to hold. In [7], Kiepuszewski et al.
showed that not all acyclic concurrent process models, i.e., models of concurrent
processes that induce acyclic process graphs, can be structured. The above fact
has been proven by means of a counter-example — a Z-structure pattern (the
name is due to the constellation of causal relations between the concurrent steps).
The authors demonstrated that under the true concurrency semantics there
exists no structured model that captures the process described by the Z-structure
pattern.

In [8,9], the authors proposed a solution to the structuring problem of acyclic
concurrent process models. The technique is capable of recognizing inherently



4 Artem Polyvyanyy and Christoph Bussler

unstructured process models, i.e., models that have no equivalent structured
representations. The theoretical basis of the approach builds on interplay of two
parsing techniques: a technique for discovering the structure of process graphs [10]
and a technique for decomposing causal, conflict, and concurrency relations [11,12]
between process steps by means of the modular decomposition [13].

The work in [14] addresses structuring of acyclic concurrent process models
that have no equivalent structured versions but which, nevertheless, can be
partially structured into their maximally-structured representations. Intuitively,
a process model M of a concurrent process P is maximally-structured if and
only if there exists no process model that describes P and is composed of more
structured modeling patterns (single-entry-single-exit fragments) than M . A
maximally-structured process model is a mixture of structured and unstructured
phases of the process, similar to an ice-water mixture which has ice cubes as one
phase and water as a second phase of the same substance.

The cyclic case of the structuring problem is addressed in [3]. This work
proposes a structuring technique and argues about the rationality of its individual
stages (by means of proof-sketching). The technique can be seen as a two-stage
approach. First, an input process model is transformed into an equivalent one
in which all the concurrency is kept encapsulated in single-entry-single-exit
fragments. Second, the obtained model is structured by iteratively applying the
approach from [9] to its parts.

3.2 Industry: Products and Standards

The software industry has a long tradition in implementing workflow or process
management systems that are based on explicit control flow. Early publications
show quite a variety of systems that were available [15]. Based on the variety and
sheer number of systems, standards were developed in context of process modeling
and process execution: Web Services Business Process Execution Language
(BPEL) [16] and Business Process Model and Notation (BPMN) [17].

By its nature, BPEL is a structured language. It does not propose native
support for unstructured control flow patterns. Whenever an inherently unstruc-
tured process needs to be specified in BPEL, one has to rely on the means in
BPEL for implicit control flow definition, e.g., the event handler construct [18]
or a combination of flow and link constructs [19]. For example, an event handler
can be used to orchestrate a subset of concurrent process steps via event-action
rules, which essentially are preconditions for execution of concurrent steps. In
contrast, BPMN allows unstructured process modeling. This means that BPMN
as the process definition language supports unstructured process specifications.
Systems that implement their execution model and semantics based on BPMN
can support unstructured process execution.

In the following, we give some examples of process management systems
proposed by the software industry (the list is by no means exhaustive). Examples
of systems that support BPEL are: Oracle BPEL Process Manager [20] and
IBM Business Process Manager Advanced [21]. Those supporting BPMN are:
TIBCO ActiveMatrix BPM [22], IBM Business Process Manager [21], Appian



The Structured Phase of Concurrency 5

BPM Suite [23] and Pegasystems [24]. The system from IBM appears to be a
hybrid system that supports both, BPMN and BPEL. Yet, there are process
management systems that follow neither BPEL nor BPMN, and those might
very well support unstructured processes. For instance, a system not based on
standards is Microsoft Workflow Manager [25,26]; note that the documentation
of this product suggests that the control flow model is supporting only structured
modeling. Finally, the web site www.workflowpatterns.com [27] discusses some
details of unstructured support and compares a few industry products.

Constructs for concurrency are natively supported in several programming
languages, e.g., Java and C#. The Windows Workflow Foundation (WWF) has
been introduced as a part of the .NET Framework and is a means of implementing
long-running processes. It is a common requirement for programming languages
that fragments of control flow that include concurrency must be structured. For
instance, the WWF does not support arbitrary cycles with parallel branching [28].

4 Expectations and Recommendations

Concurrent process modeling/programming has been practiced for years. How-
ever, recently, one can observe a remarkable growth of interest in concurrent
processes; mainly, for the purpose of automation. One of the reasons for this is
physical constraints that forbid frequency scaling in modern computer processors.
Nowadays, parallel computing is the dominant paradigm in computer architec-
tures. It gets harder to rely on hardware when getting performance improvements
out of good old sequential processes [29]. Rather, sequential processes should be
redesigned to allow for simultaneous execution of their parts. We expect that
this trend will remain for years to come leading to new requirements on the way
processes are modeled.

A formal language that includes constructs for representing process steps
and arbitrary jumps between steps can be employed to describe any process
(with respect to control flow). Nevertheless, for considerations like clarity, quality,
maintainability, modularity, etc., of process models, formal process languages often
include high level constructs. Advantages of the structured process modeling
style over the unstructured one (and vice versa) have been a topic of active
debates for decades. Structured process modeling confines itself to constructs
that map to single-entry-single-exit patterns. If the structured process modeling
methodology is enforced, one has to accept that certain concurrent processes
cannot be modeled.

Results reported in [3,7,8,9,14] provide a basis for structured modeling of
concurrent processes, most of which are implemented in a tool called bpstruct;
the tool is publicly available at http://code.google.com/p/bpstruct/. Evalu-
ations conducted in [9,14] report on small average times required to structure real
world process models taken from industry. However, in theory, the structuring
techniques are inherently complex. For instance, for certain inputs, these tech-
niques subsume a problem for which finding a solution is NP-complete. Future
studies must show if the theoretic complexity of structuring algorithms can be
improved. Other directions for future work on structuring are outlined in [3].



6 Artem Polyvyanyy and Christoph Bussler

In terms of products and standards, our expectation is that over time more and
more products will support structured as well as unstructured modeling in order
to cater for more and wider use cases. Our recommendation is that standards and
companies explicitly discuss their support for unstructured processes and extend
their modeling tools to incorporate automated transformation from unstructured
to structured processes where possible.

Acknowledgments. The first author is supported by the ARC Linkage Project
LP110100252 “Facilitating Business Process Standardisation and Reuse”.

References

1. Sassone, V., Nielsen, M., Winskel, G.: Models for concurrency: Towards a classifi-
cation. Theoretical Computer Science (TCS) 170(1–2) (1996) 297–348

2. Modell, M., Reid, R.: Thermodynamics and Its Applications. International Series
in the Physical and Chemical Engineering Sciences. Prentice-Hall (1974)

3. Polyvyanyy, A.: Structuring Process Models. PhD thesis, University of Potsdam
(2012)

4. Böhm, C., Jacopini, G.: Flow diagrams, Turing machines and languages with only
two formation rules. Communications of the ACM (CACM) 9(5) (1966) 366–371

5. Williams, M.H., Ossher, H.L.: Conversion of unstructured flow diagrams to struc-
tured form. The Computer Journal (CJ) 21(2) (1978) 161–167

6. Oulsnam, G.: Unravelling unstructured programs. The Computer Journal (CJ)
25(3) (1982) 379–387

7. Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C.: On structured workflow
modelling. In: Conference on Advanced Information Systems Engineering (CAiSE).
Volume 1789 of Lecture Notes in Computer Science., Springer (2000) 431–445

8. Polyvyanyy, A., Garćıa-Bañuelos, L., Dumas, M.: Structuring acyclic process
models. In: Business Process Management (BPM). Volume 6336 of Lecture Notes
in Computer Science., Springer (2010) 276–293

9. Polyvyanyy, A., Garćıa-Bañuelos, L., Dumas, M.: Structuring acyclic process
models. Information Systems (IS) 37(6) (2012) 518–538

10. Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified computation and generalization
of the refined process structure tree. In: Web Services and Formal Methods (WS-
FM). Volume 6551 of Lecture Notes in Computer Science., Springer (2010) 25–41

11. McMillan, K.L.: A technique of state space search based on unfolding. Formal
Methods in System Design (FMSD) 6(1) (1995) 45–65

12. Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s unfolding
algorithm. Formal Methods in System Design (FMSD) 20(3) (2002) 285–310

13. McConnell, R.M., de Montgolfier, F.: Linear-time modular decomposition of directed
graphs. Discrete Applied Mathematics (DAM) 145(2) (2005) 198–209

14. Polyvyanyy, A., Garćıa-Bañuelos, L., Fahland, D., Weske, M.: Maximal structuring
of acyclic process models. The Computer Journal (CJ). (first published online
September 19, 2012) doi:10.1093/comjnl/bxs126.

15. Jablonski, S., Bussler, C.: Workflow Management — Modeling Concepts, Architec-
ture and Implementation. International Thomson (1996)

16. OASIS: Web Services Business Process Execution Language Version 2.0. OASIS
Standard. (April 2007) http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf.

17. Object Management Group (OMG): Business Process Model and Notation (BPMN)
Version 2.0. OMG Standard. (January 2011) http://www.omg.org/spec/BPMN/2.0.



The Structured Phase of Concurrency 7

18. Ouyang, C., Dumas, M., ter Hofstede, A.H.M., van der Aalst, W.M.P., Mendling,
J.: From business process models to process-oriented software systems. ACM
Transactions on Software Engineering and Methodology (TOSEM) 19(1) (2009)

19. Lohmann, N., Kleine, J.: Fully-automatic translation of open workflow net models
into simple abstract BPEL processes. In: Modellierung. Volume 127 of Lecture
Notes in Informatics., GI (2008) 57–72

20. Oracle BPEL Process Manager:
http://www.oracle.com/technetwork/middleware/bpel/overview/index.html.

21. IBM Business Process Manager and IBM Business Process Manager Advanced:
ftp://ftp.software.ibm.com/software/integration/business-process-manager/
library/pdf801/ibpm overview pdf en.pdf.

22. TIBCO ActiveMatrix BPM:
http://www.tibco.com/multimedia/ds-amx-bpm tcm8-11546.pdf.

23. Appian BPM Suite: http://www.appian.com/bpm-software/bpm-for-designers/
process-management.jsp.

24. Craggs, S.: Comparing BPM from Pegasystems, IBM and TIBCO. (August 2011)
http://soapower.com/IBMBPM/Whitepapers/IBM-BPM-Analyst-Report-on-
IBM-vs-Pega.pdf.

25. Microsoft Workflow Manager: http://msdn.microsoft.com/en-us/library/
windowsazure/jj193528%28v=azure.10%29.aspx.

26. Control Flow Activity Designers:
http://msdn.microsoft.com/en-us/library/ee829560.aspx.

27. www.workflowpatterns.com: Pattern 10 (Arbitrary Cycles).
http://www.workflowpatterns.com/patterns/control/structural/wcp10.php.

28. Zapletal, M., van der Aalst, W.M.P., Russell, N., Liegl, P., Werthner, H.: An analysis
of Windows workflow’s control-flow expressiveness. In: European Conference on
Web Services (ECOWS), IEEE Computer Society (2009) 200–209

29. Sutter, H.: The free lunch is over: A fundamental turn toward concurrency in
software. Dr. Dobb’s Journal 30(3) (2005) 202–210

http://www.oracle.com/technetwork/middleware/bpel/overview/index.html
ftp://ftp.software.ibm.com/software/integration/business-process-manager/library/pdf801/ibpm_overview_pdf_en.pdf
ftp://ftp.software.ibm.com/software/integration/business-process-manager/library/pdf801/ibpm_overview_pdf_en.pdf
http://www.tibco.com/multimedia/ds-amx-bpm_tcm8-11546.pdf
http://www.appian.com/bpm-software/bpm-for-designers/process-management.jsp
http://www.appian.com/bpm-software/bpm-for-designers/process-management.jsp
http://soapower.com/IBMBPM/Whitepapers/IBM-BPM-Analyst-Report-on-IBM-vs-Pega.pdf
http://soapower.com/IBMBPM/Whitepapers/IBM-BPM-Analyst-Report-on-IBM-vs-Pega.pdf
http://msdn.microsoft.com/en-us/library/windowsazure/jj193528%28v=azure.10%29.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/jj193528%28v=azure.10%29.aspx

	The Structured Phase of Concurrency
	Introduction to Concurrency
	The Structured Phase
	State of the Art
	Research: Methods and Techniques
	Industry: Products and Standards

	Expectations and Recommendations



